文章编号:1000-324X(2020)03-0309-06

DOI: 10.15541/jim20190370

C@K₂Ti₆O₁₃分级纳米材料对Cr(VI)的吸附去除

朱明玉,范德哲,刘 蓓,刘舒雅,方 明,谭小丽 (华北电力大学资源环境系统优化教育部重点实验室,北京 102206)

摘 要: Cr(VI)具有非常大的生物毒性,去除溶液中的 Cr(VI)是当前的一个研究热点。本研究制备了 C@K₂Ti₆O₁₃分 级纳米材料,并用不同表征手段对材料的物相和结构等进行表征,进一步探究了初始 pH、吸附时间、离子强度等对 C@K₂Ti₆O₁₃ 复合纳米结构吸附 Cr(VI)的影响。实验结果表明 C@K₂Ti₆O₁₃ 复合纳米结构对 Cr(VI)有较强的吸附能 力,1 h 内去除率能够达到 50%以上,其吸附动力学符合准二级动力学模型,吸附热力学符合 Langmuir 等温吸附模 型,表明这种分级纳米材料在环境治理方面应用潜力巨大。

关键 词:环境; C@K₂Ti₆O₁₃; Cr(VI); 吸附

中图分类号: TQ174 文献标识码: A

C@K₂Ti₆O₁₃ Hierarchical Nano Materials: Effective Adsorption Removal of Cr(VI)

ZHU Mingyu, FAN Dezhe, LIU Bei, LIU Shuya, FANG Ming, TAN Xiaoli

(MOE Key Laboratory of Resources and Environmental System Optimization, North China Electric Power University, Beijing 102206, China)

Abstract: Cr(VI) is toxic to the organic life. Eliminating the pollutant of Cr(VI) in solution has become a hot research field. In this work, the $C@K_2Ti_6O_{13}$ hierarchical nanomaterials were prepared by liquid phase deposition combined with hydrothermal treatment, which were constituted by carbon nano spheres and $K_2Ti_6O_{13}$ nanobelts. The morphology and phase of the materials were characterized by different methods. The $C@K_2Ti_6O_{13}$ hierarchical nanomaterials show high potential as adsorbent to adsorb Cr(VI). Effect of initial pH, adsorption time and ionic strength on Cr(VI) adsorption by $C@K_2Ti_6O_{13}$ composite nanostructures were investigated. The elimination rate of Cr(VI) can reach 50% in 1 h. The adsorption kinetics agrees well with the pseudo- second-order kinetic model, and the adsorption thermodynamics accords with the Langmuir isotherm adsorption model. It can be expected that the $C@K_2Ti_6O_{13}$ hierarchical nanomaterials have great application potential in environmental treatment.

Key words: environment; C@ K₂Ti₆O₁₃; Cr(VI); adsorption

作为一种重金属离子,铬(Cr(VI))通常用于采 矿作业、金属电镀设备和电子设备的制造等。Cr(VI) 是一种强氧化剂,对生物体毒性巨大。Cr(VI)通常是 水溶性的且主要以铬酸盐(H₂CrO₄, pH<1.0)、水合铬 酸根离子(HCrO₄⁻, pH=1.0~6.0)和铬酸根离子(CrO₄²⁻, pH>6)的形式存在。此外,当 Cr(VI)的浓度大于

National Natural Science Foundation of China (U1607102, 21377132, 91326202); Fundamental Research Funds for the Central Universities (2019MS040)

ZHU Mingyu(1995–), female, Master candidate. E-mail: myzhu2018@126.com

收稿日期: 2019-07-22; 收到修改稿日期: 2019-08-28

基金项目:国家自然科学基金(U1607102, 21377132, 91326202);中央高校基础研究基金(2019MS040)

作者简介:朱明玉(1995-),女,硕士研究生.E-mail: myzhu2018@126.com

通讯作者:方 明, 副教授. E-mail: mfang@ncepu.edu.cn FANG Ming, associate professor. E-mail: mfang@ncepu.edu.cn

1000 mg/L 时,还会形成重铬酸根离子(Cr₂O₇²⁻)^[1]。 人们已经探索了许多方法去除铬,如膜分离^[2]、离子 交换树脂^[3]、电化学还原^[4]、吸附法^[5-6]等。其中,吸 附法是一种低成本、易操作的方法。多种材料包括 碳材料^[7]、矿物质^[8]以及植物残渣^[9]等,已经被用来 吸附去除 Cr(VI),但应用新型复合纳米材料去除 Cr(VI),仍然是当前的一个热点研究问题。

钛酸盐通常具有层状结构, 它的合成方法简单, 并且易于控制而获得不同的形态,因此受到广泛关 注^[10-11]。在四价钛酸盐的晶体结构中, TiO₆ 八面体 通常以共边缘和共顶点形成层状结构,因此钛酸盐 纳米结构通常具有优异的吸附性能。研究发现 H₂Ti₃O₇ 纳米管对碱性品红具有很强的吸附能力, 这是由于染料的氨基(-NH2)与表面钛酸盐纳米管的 --OH 基团的相互作用造成的^[12]。Huang 等^[13]合成的 钛酸钠纳米花对 Cd 具有较大的吸附能力和高选择 性。Liu 等^[14]研究了一系列钛酸钠纳米材料, 通过改 变溶液 pH 去除 Cu(II)和 Cd(II), 证明主要的吸附机 制是金属阳离子和 Na⁺之间的离子交换。然而, 钛酸 钾作为层状材料的研究远远少于钛酸钠。我们前期 的实验表明, 钛酸钾更易形成纳米带状结构^[15]。相 比易于形成片状或管状的钛酸钠[16-18]而言, 钛酸钾 纳米带结构上更具开放性。另外,单一钛酸盐纳米 材料存在易于结块和机械性能较差等问题,会大幅 降低材料的比表面积,进而使材料在使用过程中丧 失优越性。去除 Cr(VI)的研究发现, Cr(VI)通常以阴 离子基团的形式存在,一般不易进行离子交换反应, 分级纳米结构为解决这些问题提供了可能^[19]。这种 结构通常具有较高的机械性能,不易团聚,可以保 持很大的比表面积而不发生变化。

基于上述讨论,本工作将 K₂Ti₆O₁₃ 纳米带成功 地复合在碳颗粒表面,形成 C@K₂Ti₆O₁₃ 的分级纳 米结构,并将其应用于吸附去除 Cr(VI)。

1 实验方法

1.1 试剂

实验所用药品均为分析纯且未经过进一步的处 理。Ti(SO₄)₂和NaOH购自Sinopharm group chemical reagent co. LTD; HNO₃购自北京化工厂; K₂Cr₂O₇购 自山东西亚化学工业有限公司; C₁₃H₁₄N₄O 购自 Aladdin。实验用水均为OKP-S220 纯水机生产的去 离子水,电导率为 18.2 M Ω ·cm。

1.2 材料合成及表征

根据文献[18]制备碳纳米颗粒:取3g干燥的碳纳米颗粒,36g硫酸钛粉末,18g尿素加入到100mL

去离子水中,并在 100 ℃下磁力搅拌直至溶液从黑 色变为灰色。然后将其转移到 Teflon 衬里的高压釜 中,并加入9g KOH。再将高压釜密封后放入烘箱 中,并在 200 ℃保温 18 h。最后,将高压釜用水冷 却至室温,通过离心收集产物并用去离子水洗涤数 次,在空气中干燥。

采用 SmartLab SE (Rigaku Corporation)分析样 品的物相结构。通过 UV-2700 (Shimadzu, UV-2700) 测量 UV-Vis 吸收光谱。通过场发射扫描电子显微镜 (FESEM; FEI Sirion-200)和透射电子显微镜(JEOL JEM-2010, 200 kV)表征样品的形态和微结构。通过 SHIMADZU-IRT racer-100 测试样品的傅立叶变换 红外图谱。通过 Tristar II 3020 比表面分析仪测量材 料的 BET 表面积。通过 NETZSCH STA2500 热重分 析仪研究材料的热稳定性和组分。

1.3 吸附批实验

所有吸附实验除等温线外均在室温环境条件下 进行。使用 K₂Cr₂O₇和 NaNO₃水溶液,在 10 mL 聚 乙烯管中配制含有所需浓度的不同组分的溶液,并 使用 0.5 mol·L⁻¹ HCl 和 NaOH 溶液控制悬浮液的初 始 pH^[20]。在 Cr(VI)吸附反应完成后,通过滤膜固液 分离,采用二苯碳酰二肼法进行显色,使用紫外–可见 光吸收法确定 Cr(VI)的浓度。在 pH=4, 1~100 mg·L⁻¹ Cr(VI)的浓度范围条件下测量吸附等温线。Cr(VI)在 吸附剂上的吸附量由初始浓度和吸附后浓度之间的 变化确定,吸附百分比(%),分配系数(K_d)和平衡时 的吸附容量 q_e (mg/g)可用下列公式表示:

$$Adsorption = \frac{C_0 - C_e}{C_0} \times 100\%$$
(1)

$$K_{\rm d} = \frac{C_0 - C_{\rm e}}{C_{\rm e}} \times \frac{V}{m} \tag{2}$$

$$q_{\rm e} = \frac{C_0 - C_{\rm e}}{m} \times V \tag{3}$$

其中, C_0 (mg·L⁻¹)表示 Cr(VI)的初始浓度, C_e (mg·L⁻¹) 表示 Cr(VI)的平衡浓度, V (mL)表示悬浮液的体积, m (g)表示悬浮液体积吸附剂的质量。所有实验数据 的相对误差均小于 5%。

2 结果与讨论

2.1 C@K₂Ti₆O₁₃的表征

图 1(a)为所得产物的 SEM 照片,从图中可以看出,产物具有海胆状分级纳米结构,直径在 1~2 μm 之间。从产物的 TEM 分析结果(图 1(b))可以看出, 产物核心为直径为 200~500 nm 的颗粒,外面长满

图 1 C@K₂Ti₆O₁₃的(a) SEM 照片, (b) TEM 照片, (c) HETEM 照片, (d) XRD 图谱, (e) N₂吸附--脱附等温线和(f)热重及其微分曲线 Fig. 1 (a) SEM image, (b) TEM image, (c) HRTEM image, (d) XRD pattern, (e) N₂ adsorption-desorption

isotherm and (f) TGA- DTG curves of C@K₂Ti₆O₁₃ hierarchical nanostructures

了长度在 0.5~1 µm 的纳米带。图 1(c)为 C@K₂Ti₆O₁₃ 的高分辨透射电镜照片,具有明显的晶格结构,晶 格间距为0.75 nm, 对应K₂Ti₆O₁₃的(200)晶面, 证明 所得带状材料为钛酸钾。图 1(d)为所得产物的 XRD 图谱、尽管产物的衍射峰较弱,但所有的峰都能很 好地对应 K₂Ti₆O₁₃。另外, 图中钛酸钾的衍射峰比 较宽,是由于材料尺度小,具有很大的比表面积造 成的。同时,在 XRD 图谱中没有出现碳的衍射峰, 可能是因为碳颗粒为非晶相结构造成的。进一步对 C@K₂Ti₆O₁₃材料进行 N₂吸附--脱附等温线测试,如 图 1(e)所示,其比表面积是 43.87 m²/g。这是一个典 型的 IV 型吸附曲线, 说明材料中存在介孔^[21]。为了 探究材料的热稳定性,实验又对 C@K₂Ti₆O₁₃ 纳米 复合材料进行了热重(TGA-DTG)分析(图 1(f))。从图 中可以看出,在 50~630 ℃范围内,产物有明显的失 重(~15%)。为进一步分析其原因,实验测试了不同温 度退火处理后样品的红外光谱图(图 2), 在 3287 cm⁻¹ 处的吸收对应于水分子的 O-H 键伸缩振动, 随着热 处理温度的升高, O-H 特征峰逐渐减弱, 对应材料表 面吸附水以及结合水的脱除^[22-23]。另外,还可以观察 到典型的 C=C 键(1600 cm⁻¹)和 C-O 键(1360 cm⁻¹) 的吸收峰,且随着退火温度的升高,逐渐减弱,当 退火温度为 800 ℃时基本消失, 这对应着碳颗粒的 分解和碳化过程^[22]。而钛酸盐的相关结构较稳定, Ti-O 键(500 cm⁻¹)、Ti=O 键(950 cm⁻¹)、O-Ti-O 键 (700 cm⁻¹)在热处理过程中基本不变^[23]。

2.2 不同初始 pH 和离子强度的影响

Cr(VI)离子在溶液中通常以阴离子基团的形式 出现,并且工业废水中一般含有多种离子。本实验 首先研究了 NO₃⁻阴离子基团和 pH 对 Cr(VI)在 C@K₂Ti₆O₁₃ 复合纳米材料表面吸附行为的影响, 如图 3 所示。从图中可以看出, pH 对 Cr(VI)在 C@K₂Ti₆O₁₃ 复合纳米材料表面的吸附过程有重要 的影响, pH 越低, Cr(VI)的去除率越高。当 pH=3 时, Cr(VI)的去除率可达 73%;当 pH>3 时,随着 pH 的 升高, Cr(VI)的去除率大幅下降; pH 为中性至碱性 时 Cr(VI)的去除率下降缓慢。当 pH=10 时, Cr(VI) 的去除率降至 50%左右。这是因为复合材料表面上 富含的羟基对 Cr(VI)的吸附起主要作用,溶液 pH

图 2 不同温度退火样品的傅里叶红外光谱图 Fig. 2 FT-IR spectra of the samples annealed at different temperatures

图 3 pH 和离子强度对 Cr(VI)去除的影响 Fig. 3 Effect of pH and ionic strength on Cr(VI) adsorption

越低, 表面羟基质子化(-OH₂⁺)越完全, 同时, 在酸 性条件下, Cr(VI)主要以 HCrO₄⁻存在, 容易与质子 化的羟基基团发生作用:

$$-OH_2^+ + HCrO_4^- \rightleftharpoons OH_2CrO_4^- + H^+$$
(4)

随着 pH 升高, Cr(VI)逐渐转化为 CrO₄²⁻, 单位含 Cr(VI)阴离子的基团与羟基基团的作用变得更强, 但同时质子化的羟基基团开始去质子化, 所以尽管 此时吸附化学键的强度变大, 但吸附位点变少, 总 体表现出对 Cr(VI)的吸附能力下降。另一方面, 从 图中可以看出, 随着溶液中 NaNO₃ 浓度的增大, Cr(VI)去除能力下降, 说明 NaNO₃ 中的阴离子基团 NO₃ ¬对 Cr(VI)的吸附具有一定的抑制作用。

2.3 吸附动力学

进一步研究反应时间对 C@K₂Ti₆O₁₃ 吸附去除 Cr(VI)效果的影响,如图 4(a)所示。可以看出, C@K₂Ti₆O₁₃ 对 Cr(VI)的吸附去除包含三个阶段: 0~100 min 为快速吸附阶段,此时 Cr(VI)被快速去 除,去除率接近 55%; 100~300 min 吸附速率变慢; 300 min 以后,吸附达到平衡,去除率可以达到 56.5%左右。C@K₂Ti₆O₁₃ 对 Cr(VI)的吸附去除可以 利用动力学模型进行拟合,便于更好地分析其吸附 机制。利用准二级模型(公式 5)来评估吸附过程:

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$
(5)

其中, q_t (mg·g⁻¹)为接触时间为 t 时, C@K₂Ti₆O₁₃ 对 Cr(VI)的去除量; k_2 (g·mg⁻¹·min⁻¹)是准二级动力学 速率常数。如图 4(b)所示,准二级的拟合数据 R^2 =1, 说明 Cr(VI)在去除过程中主要受化学作用,而不是 物理反应过程控制,即吸附以形成化学键为主,这 进一步验证了前述关于吸附机制的讨论。

2.4 反应温度的影响

不同温度下的吸附结果可以用来分析吸附过程 的进行方向,因此进一步研究了温度对吸附效率的

图 4 (a) 反应时间对 C@K₂Ti₆O₁₃吸附去除 Cr(VI)效果的影 响及其(b)准二级动力学模型

Fig. 4 (a) Effect of contact time on Cr(VI) adsorption onto $C@K_2Ti_6O_{13}$ HNMs and (b) corresponding fitting curve by the pseudo-second-order kinetic model

影响,在 298(室温)、313、328 K 温度下, Cr(VI)在 C@K₂Ti₆O₁₃上的吸附等温线如图 5(a)所示。随着温 度升高, Cr(VI)的去除率逐渐减小,表明升高温度不 利于 Cr(VI)的去除,吸附过程是放热反应。

为了进一步研究反应吸附的本质,使用 Langmuir 和 Freundlich 模型拟合等温线,见式(6,7):

Langmuir 模型:
$$\frac{C_{\rm e}}{q_{\rm e}} = \frac{1}{bq_{\rm m}} + \frac{C_{\rm e}}{q_{\rm m}}$$
 (6)

Freundlich 模型: $\ln q = \ln K_f + n \ln C_e$ (7)

式中, b (L·mg⁻¹)是与吸附热有关的 Langmuir 模型常量, $K_{\rm f}$ 和 n 是 Freundlich 模型常量, $q_{\rm m}$ (mg·g⁻¹)代表 Cr(VI)在 C@K₂Ti₆O₁₃上的最大吸附量,相关参数见表 1。

由表 1 可以看出, Langmuir 拟合的 R^2 , 分别达 到了 0.97, 0.95 和 0.94, 高于用 Freundlich 拟合的结 果, 说明 Langmuir 模型很好地拟合了实验数据, 这 表明活性位点在 C@K₂Ti₆O₁₃ 上均匀分布, 并且 Cr(VI)在 C@K₂Ti₆O₁₃ 分级纳米结构表面是单层吸 附过程^[24-27]。

通过以下公式计算了吸附过程的热力学参数, 如吉布斯自由能(ΔG^{θ})、熵变(ΔS^{θ})和焓变(ΔH^{θ})来确 定吸附过程的热力学性质:

图 5 Cr(VI)在 C@K₂Ti₆O₁₃上的(a)吸附等温线, (b)Langmuir 模型的拟合, (c)Freundlich 模型的拟合和(d)吸附热力学拟合曲线 Fig. 5 (a) Adsorption isotherms, (b) Langmuir isotherm model, (c) Freundlich isotherm model, and (d) plot of lnK_d vs 1/T of the Cr(VI) on C@K₂Ti₆O₁₃

$$\Delta G = -RT \ln K_0 \tag{8}$$

$$\ln K_{\rm d} = \frac{\Delta S^{\theta}}{R} - \frac{\Delta H^{\theta}}{RT} \tag{9}$$

其中, R=8.314J/(mol·K), 将 lnK_d 对 1/T 做直线拟合, 通过得到的斜率和截距可以分别求得 ΔH^{θ} 和 ΔS^{θ} , 最终拟合结果如表 2 所示。

从表中可以看出, $\Delta H^{\theta} > 0$, 说明吸附反应是吸 热反应^[27], 同时, 反应属于熵增过程($\Delta S^{\theta} > 0$)。由反 应吉布斯自由能变化计算得到不同温度下的吉布斯

表1 C@K₂Ti₆O₁₃复合结构对 Cr(VI)吸附的 Freundlich 和 Langmuir 等温吸附模型拟合相关参数

Table 1	Parameters simulated by Langmuir and					
Freundlich models of C@K ₂ Ti ₆ O ₁₃						

<i>T</i> /K –	Langmuir model			Freundlich model		
	$q_{ m m}$	b	R^2	n	$K_{\rm f}$	R^2
298	37	0.056	0.97	2.7	2.2	0.97
313	37	0.052	0.95	2.7	2.2	0.93
328	29	0.066	0.94	3.2	2.2	0.89

表 2 对 Cr(VI)吸附的热力学参数 Table 2 Thermodynamic parameters for Cr(VI) adsorption

		-			
$\Delta H^{ heta}$	$\Delta S^{ heta}$	$\Delta G^{\theta}/(\mathrm{kJ}\cdot\mathrm{mol}^{-1})$			
$/(kJ \cdot mol^{-1})$	$/(kJ \cdot K^{-1} \cdot mol^{-1})$	298 K	313 K	323 K	
0.075	0.0124	-4.77	-4.74	-4.75	

自由能均小于零,说明吸附反应是自发进行的,并 且随着温度的升高,值变大,意味着随着反应温度 的升高,不利于吸附反应,这与前面的分析结果 一致。

3 结论

利用液相沉积法结合水热处理成功制备了 K₂Ti₆O₁₃ 纳米带包裹碳颗粒的 C@K₂Ti₆O₁₃ 分级纳 米结构。碳纳米颗粒的直径小于 500 nm, K₂Ti₆O₁₃ 为纳米带状结构,长度为0.5~1.0 μm,宽度为8 nm。 这种纳米结构具有较大的比表面积,用于 Cr(VI)的 吸附研究。结果表明,所得 C@K₂Ti₆O₁₃ 分级纳米结 构表现出优异的 Cr(VI)吸附去除能力,可在1h内去 除 50%的 Cr(VI),其吸附动力学符合准二级速率方 程。吸附热力学研究表明,C@K₂Ti₆O₁₃ 复合结构对 Cr(VI)的吸附行为符合单层吸附的 Langmuir 等温模 型,并且是一个可自发进行的吸热过程。Cr(VI)的吸 附量随温度的升高而减少,温度越高,越不利于吸 附反应。这种 C@K₂Ti₆O₁₃ 的制备方法简单,具有良 好的 Cr(VI)去除能力和很好的实用价值。

参考文献:

 GLADYSZ-PLASKA AGNIESZKA, MAJDAN MAREK, PIKUS STANISLAW, et al. Simultaneous adsorption of chromium(VI) and phenol on natural red clay modified by HDTMA. *Chemical Engineering Journal*, 2012, **179:** 140–150.

- [2] MELITA LARISA, POPESCU MARIA. Removal of Cr(VI) from industrial water effluents and surface waters using activated composite membranes. *Journal of Membrane Science*, 2008, 312(1/2): 157–162.
- [3] LI XIAO-FAN, SHI SHAO-YUAN, CAO HONG-BIN, et al. Comparative study of chromium(VI) removal from simulated industrial wastewater with ion exchange resins. *Russian Journal of Physical Chemistry* A, 2018, 92(6): 1229–1236.
- [4] CHUANG SHENGMING, YA VINH, FENG CHIAOLIN, et al. Electrochemical Cr(VI) reduction using a sacrificial Fe anode: impacts of solution chemistry and stoichiometry. Separation and Purification Technology, 2018, 191: 167–172.
- [5] HONG HAN-LIE, JIANG WEI-TEH, ZHANG XIAO-LING, et al. Adsorption of Cr(VI) on STAC-modified rectorite. Applied Clay Science, 2008, 42(1/2): 292–299.
- [6] WANG JIAN, LIANG YU, JIN QING-QING, et al. Simultaneous removal of graphene oxide and chromium(VI) on the rare earth doped titanium dioxide coated carbon sphere composites. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5550–5561.
- [7] MOHANTY KAUSTUBHA, JHA MOUSAM, MEIKAP B C, et al. Removal of chromium(VI) from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride. *Chemical Engineering Science*, 2005, **60**: 3049–3059.
- [8] LAZARIDIS N K, PANDI T A, MATIS K A. Chromium(VI) removal from aqueous solutions by Mg-Al-CO₃ hydrotalcite: sorption-desorption kinetic and equilibrium studies. *Industrial & En*gineering Chemistry Research, 2004, 43: 2209–2215.
- [9] YANG ZHI-HUI, WANG BING, CHAI LI-YUAN, et al. Removal of Cr(III) and Cr(VI) from aqueous solution by adsorption on sugarcane pulp residue. *Journal of Central South University of Tech*nology, 2009, 16(1): 101–107.
- [10] LIU XIAO-YUAN, LIU BAO-DAN, JIANG YA-NAN, et al. Insitu synthesis of perovskite SrTiO₃ nanostructures with modified morphology and tunable optical absorption property. Journal of Inorganic Materials, 2019, 34(1): 65–71.
- [11] TAN XIAO-LI, LIU GE, MEI HUI-YANG, et al. Fabrication of GO/Na₂Ti₃O₇ composite and its efficient removal of ⁶⁰Co(II) from radioactive wastewater. Science China-Chemistry, 2019, 49(1): 145–154.
- [12] MARIANA HINOJOSA-REYES, CAMPOSECO-SOLIS ROBERTO, RUIZ FACUNDO. H₂Ti₃O₇ titanate nanotubes for highly effective adsorption of basic fuchsin dye for water purification. *Microporous* and Mesoporous Materials, 2019, 276: 183–191.
- [13] HUANG JI-QUAN, CAO YONG-GE, LIU ZHU-GUANG, et al. Efficient removal of heavy metal ions from water system by titanate nanoflowers. *Chemical Engineering Journal*, 2012, 180: 75–80.
- [14] LIU WEN, SUN WEI-LING, HAN YUN-FEI, et al. Adsorption of Cu(II) and Cd(II) on titanate nanomaterials synthesized via hydrothermal method under different NaOH concentrations: role of sodium content. Colloids and Surfaces A-Physicochemical and En-

gineering Aspects, 2014, 452: 138–147.

- [15] ZHU MING-YU, CAI YA-WEN, LIU SHU-YA, et al. K₂Ti₆O₁₃ hybridized graphene oxide: effective enhancement in photodegradation of RhB and photoreduction of U(VI). Environmental Pollution, 2019, 248: 448–455.
- [16] ZHU HONG-SHAN, TAN XIAO-LI, TAN LI-QIANG, et al. Magnetic porous polymers prepared via high internal phase emulsions for efficient removal of Pb²⁺ and Cd²⁺. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 5206–5213.
- [17] LIU GE, MEI HUI-YANG, TAN XIAO-LI, et al. Enhancement of Rb⁺ and Cs⁺ removal in 3D carbon aerogel-supported Na₂Ti₃O₇. Journal of Molecular Liquids, 2018, 262: 476–483.
- [18] TAN XIAO-LI, FANG MING, TAN LI-QIANG, et al. Core-shell hierarchical C@Na₂Ti₃O₇·9H₂O nanostructures for the efficient removal of radionuclides. Environmental Science: Nano, 2018, 5(5): 1140–1149.
- [19] LIU SHOU-XIN, SUN JIAN, HUANG ZHAN-HUA. Carbon spheres/activated carbon composite materials with high Cr(VI) adsorption capacity prepared by a hydrothermal method. *Journal* of Hazardous Materials, 2010, 173(1/2/3): 377–383.
- [20] WU JIN, ZHU HONG-SHAN, LIU GE, et al. Fabrication of coreshell CMNP@PmPD nanocomposite for efficient As(V) adsorption and reduction. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 4399–4407.
- [21] WANG JIAN, WANG XIANG-XUE, ZHAO GUI-XIA, et al. Polyvinylpyrrolidone and polyacrylamide intercalated molybdenum disulfide as adsorbents for enhanced removal of chromium(VI) from aqueous solutions. *Chemical Engineering Journal*, 2018, 334: 569–578.
- [22] CAI YA-WEN, WANG XIN, FENG JING-HUA, et al. Fully phosphorylated 3D graphene oxide foam for the significantly enhanced U(VI) sequestration. *Environmental Pollution*, 2019, 249: 434–442.
- [23] SEHATI S, ENTEZARI M H. Ultrasound facilitates the synthesis of potassium hexatitanate. *Ultrasonics Sonochemistry*, 2016, 32: 348–356.
- [24] WANG JIAN, ZHU MING-YU, CHEN ZHONG-SHAN, et al. Polyacrylamide modified molybdenum disulfide composites for efficient removal of graphene oxide from aqueous solutions. *Chemical Engineering Journal*, 2019, 361: 651–659.
- [25] PANG HONG-WEI, DIAO ZHUO-FAN, WANG XIANG-XUE, et al. Adsorptive and reductive removal of U(VI) by dictyophora indusiate-derived biochar supported sulfide NZVI from wastewater. Chemical Engineering Journal, 2019, 366: 368–377.
- [26] FANG MING, TAN XIAO-LI. Review on the mechanism of metal surface plasmon resonance enhanced photocatalysis of semiconductor nanomaterials. *Journal of Nantong University (Natural Science Edition)*, 2019, **18(2)**: 1–13.
- [27] WANG JIAN, WANG PENG-YI, WANG HUI-HUI, et al. Preparation of molybdenum disulfide coated Mg/Al layered double hydroxide composites for efficient removal of chromium(VI). ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7165–7174.